PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) III B.TECH I SEMESTER END REGULAR EXAMINATIONS, DEC/JAN – 2022/23 SOFTWARE TESTING (AIDS Branch)

Time: 3 hours

(AIDS DIalici

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u> Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1.	a)	List out the taxonomy of bugs.	[2M]	1	1
	b)	List the elements of flow graph.	[2M]	2	1
	c)	What is path expression?	[2M]	3	2
	d)	What is dead state?	[2M]	4	2
	e)	List the approaches to test data generation.	[2M]	5	1

<u>PART-B</u> Answer One Question from each UNIT (5X10=50M)

	Jo	Questions	Marks	CO	KI				
Q.1	NU.	Questions	IVIAIKS	0	<u>KL</u>				
UNIT-I									
2.		Explain consequences of bugs.	[10M]	1	2				
OR									
3.		Illustrate boundary value analysis with suitable examples.	[10M]	1	3				
UNIT-II									
4.		Explain the strategies in data flow testing.	[10M]	2	2				
OR									
5.		Explain the path instrumentation in detail.	[10M]	2	2				
UNIT-III									
6.		Illustrate path products and path expressions with suitable examples.	[10M]	3	3				
OR									
7.		Demonstrate the reduction procedure with suitable example.	[10M]	3	3				
UNIT-IV									
8.		What is a state graph? How they can be used in transition testing? Illustrate with suitable example.	[10M]	4	3				
OR									
9.	a)	How to use decision-tables as basis for test case design? Explain.	[5M]	4	2				
	b)	How path expressions are used in logic-based testing?	[5M]	4	2				
UNIT-V									
10.		Explain each step of node reduction algorithm in detail.	[10M]	5	2				
OR									
11.		Describe the test data generation using Generic Algorithm.	[10M]	5	2				
